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DAY 1

Tuesday, 6 February 2018

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. Find all pairs of positive integers (n, k) such that

n! + 8 = 2k.

(If n is a positive integer, then n! = 1× 2× 3× · · · × (n− 1)× n.)

2. Consider a line with 1
2(3

100 + 1) equally spaced points marked on it.

Prove that 2100 of these marked points can be coloured red so that no red point is at the

same distance from two other red points.

3. Let ABCDEFGHIJKLMN be a regular tetradecagon.

Prove that the three lines AE, BG and CK intersect at a point.

(A regular tetradecagon is a convex polygon with 14 sides, such that all sides have the

same length and all angles are equal.)

4. Find all functions f defined for real numbers and taking real numbers as values such that

f(xy + f(y)) = yf(x)

for all real numbers x and y.
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DAY 2

Wednesday, 7 February 2018

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. The sequence a1, a2, a3, . . . is defined by a1 = 1 and, for n ≥ 2,

an = (a1 + a2 + · · ·+ an−1)× n.

Prove that a2018 is divisible by 20182.

6. Let P , Q and R be three points on a circle C, such that PQ = PR and PQ > QR.

Let D be the circle with centre P that passes through Q and R. Suppose that the circle

with centre Q and passing through R intersects C again at X and D again at Y .

Prove that P , X and Y lie on a line.

7. Let b1, b2, b3, . . . be a sequence of positive integers such that, for each positive integer n,

bn+1 is the square of the number of positive factors of bn (including 1 and bn). For

example, if b1 = 27, then b2 = 42 = 16, since 27 has four positive factors: 1, 3, 9 and 27.

Prove that if b1 > 1, then the sequence contains a term that is equal to 9.

8. Amy has a number of rocks such that the mass of each rock, in kilograms, is a positive

integer. The sum of the masses of the rocks is 2018 kilograms. Amy realises that it is

impossible to divide the rocks into two piles of 1009 kilograms.

What is the maximum possible number of rocks that Amy could have?
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1. Find all pairs of positive integers (n, k) such that

n! + 8 = 2k.

(If n is a positive integer, then n! = 1× 2× 3× · · · × (n− 1)× n.)

Solution (Angelo Di Pasquale)

If n ≥ 6, then n! is divisible by 6! = 720 = 16× 45. It follows that n! + 8 is 8 more than

a multiple of 16. Therefore, n! + 8 is divisible by 8, but not divisible by any larger power

of 2. Since n! + 8 is larger than 8, it follows that there is no solution with n ≥ 6.

One can now test all possible values 1 ≤ n ≤ 5.

• For n = 1, we have n! + 8 = 1 + 8 = 9, which is not a perfect power of 2.

• For n = 2, we have n! + 8 = 2 + 8 = 10, which is not a perfect power of 2.

• For n = 3, we have n! + 8 = 6 + 8 = 14, which is not a perfect power of 2.

• For n = 4, we have n! + 8 = 24 + 8 = 32, which is equal to 25.

• For n = 5, we have n! + 8 = 120 + 8 = 128, which is equal to 27.

Therefore, the only pairs of positive integers that satisfy the conditions of the problem are

(n, k) = (4, 5) and (5, 7).
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2. Consider a line with 1
2(3

100 + 1) equally spaced points marked on it.

Prove that 2100 of these marked points can be coloured red so that no red point is at the

same distance from two other red points.

Solution 1 (Mike Clapper)

First, observe that if k points can be coloured red among m equally spaced points, then

2k points can be coloured red among 3m − 1 equally spaced points. This can be done

by colouring k of the points among the leftmost m points and k of the points among the

rightmost m points. The colouring is valid since among the 3m− 1 points, the leftmost m

points are each closer to each other than to any of the rightmost m points.

Second, we use this fact to prove by induction that 2n points can be coloured red among
1
2(3

n + 1) equally spaced points, for all positive integers n. Observe that the base case

n = 1 is trivial.

Solution 2 (Alice Devillers, Angelo Di Pasquale, Chaitanya Rao and Jamie Simpson)

We prove a more general fact, replacing 1
2(3

100+1) with 1
2(3

n+1) and 2100 with 2n in the

original problem statement.

Take the points to be the integers 0, 1, 2, . . . , 3
n−1
2 on the real line, so that the distance

from x to y is just |y − x|. Now consider these integers written in base 3. They all have

at most n digits, since the last one is 3n−1
2 = 3n−1

3−1 = 1 + 3 + 32 + · · ·+ 3n−1.

Take S to be the set of points whose corresponding numbers contain only 0s and 1s in

base 3. All such numbers with at most n digits are in the set, so S has size 2n. We colour

the points in S red and show that no point in S is equidistant from two other points in S.

Suppose for a contradiction that there exist x, a, b ∈ S such that x is equidistant from a

and b with a �= b. Then without loss of generality, we have a < x < b and x−a = b−x, so

2x = a+ b. Now since x ∈ S, 2x only has digits 0 and 2 in base 3. On the other hand, a

and b only have digits 0 and 1, so there is no carry anywhere when adding them up. Since

a �= b, there is a position where one has a digit 1 and the other has a digit 0, but then

a+ b has a digit 1 in that position, a contradiction.
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3. Let ABCDEFGHIJKLMN be a regular tetradecagon.

Prove that the three lines AE, BG and CK intersect at a point.

(A regular tetradecagon is a convex polygon with 14 sides, such that all sides have the

same length and all angles are equal.)

Solution 1 (Angelo Di Pasquale)

Let AE intersect BG at X. It suffices to prove that K, X and C are collinear. Let P
denote the regular 14-sided polygon and set θ = 1

14 × 180◦.

A B

C

D

E

F

G

HI

J

K

L

M

N

X

The angle subtended by a side of P with the centre of P is 1
14 × 360◦ = 2θ. It follows that

the angle subtended by a side of P with any other vertex of P is equal to θ. From this

information, we compute that

∠KCB = 5θ, ∠CBG = 4θ, ∠BAE = 3θ.

We also have

∠AXB = ∠AEB + ∠EBG = θ + 2θ = 3θ.

So�ABX is isosceles with AB = BX, so BC = AB = BX. Since ∠CBX = ∠CBG = 4θ,

and 14θ = 180◦, we have

∠BXC = ∠XCB = 5θ.

Since ∠XCB = ∠KCB, it follows that K, X and C are collinear.

Solution 2 (Angelo Di Pasquale)

Another way to see that ∠ACB = 3θ is to note that AX ‖ MG, and so ∠AXB =

∠MGB = 3θ.

Solution 3 (Ivan Guo)

Consider triangle ACG. Since

∠KCA = ∠KCG = 5θ, ∠EAG = ∠EAC = 2θ, ∠BGC = ∠BGA = θ,

the required concurrency follows from the trigonometric form of Ceva’s theorem.
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Solution 4 (Daniel Mathews)

First, we claim that AE is the angle bisector of AC and AG. To see this, note that CEG

is isosceles, with ∠ECG = ∠EGC; and as ACEG is cyclic, then ∠EAG = ∠EAC.

Second, we similarly claim that GB is the angle bisector of GC and GA. To see this, note

that ABC is isosceles, so ∠BAC = ∠BCA; as ABCG is cyclic, then ∠BGC = ∠BGA.

Third, we again similarly claim that CK is the angle bisector of CA and CG. To see this,

note that GKA is isosceles, with ∠KGA = ∠KAG; as ACGK is cyclic, then ∠KCA =

∠KCG.

Thus, AE, BG, CK are the angle bisectors of the triangle ACG. So they are concurrent

at the incentre of this triangle.

Solution 5 (Alan Offer)

Since AB = BC, CE = EG and GK = KA, this follows immediately from the theorem

that the diagonals of a cyclic hexagon are concurrent if and only if the product of alternate

sides is equal to the product of the other three sides.

Solution 6 (Alan Offer)

Using lower case for complex numbers representing the points with the corresponding

upper case letter, let a = 1 and b = eπi/7. Then c = b2, e = b4, g = b6 and k = b10 = −b3.

Also, notice that b7 = −1.

Since the points A, X and E are collinear, we have (a− x)(a− e) = (a− x)(a− e). With

a little algebra, this is found to be equivalent to

x+ b4x̄ = 1 + b4. (1)

Similarly, since B, X and G are collinear, we have (b − x)(b− g) = (b− x)(b − g) which

gives

x− x̄ = b+ b6. (2)

To show that C, X and K are collinear, we must show that (c−x)(c− k) = (c− x)(c−k),

or equivalently, that x− x̄ = b2 − b3.

Let u = b + b4 and consider adding u times equation (2) to (1 − u) times equation (1).

The resulting left hand side is

u(x− x̄) + (1− u)(x+ b4x̄) = x− (u− b4 + b4u)x̄

= x− (b+ b4 − b4 + b5 + b8)x̄

= x− b5x̄.

The resulting right hand side is

u(b+ b6) + (1− u)(1 + b4) = u(b+ b6 − 1− b4) + 1 + b4

= b2 − 1− b− b5 + b5 − b3 − b4 + b+ 1 + b4

= b2 − b3.

Hence, x− x̄ = b2 − b3. As noted above, it follows that C, X and K are collinear.
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4. Find all functions f defined for real numbers and taking real numbers as values such that

f(xy + f(y)) = yf(x)

for all real numbers x and y.

Solution 1 (Angelo Di Pasquale)

There are two such functions: f(x) = 0 for all x ∈ R and f(x) = 1− x for all x ∈ R.

The function f(x) = 0 for all x ∈ R is obviously a solution. Now suppose that there exists

a such that f(a) �= 0. Then since f(ay+f(y)) = yf(a), and yf(a) covers all real numbers,

we conclude that f is surjective.

Let x = 0 to find

f(f(y)) = yf(0). (1)

Since f is surjective, so is f ◦ f = yf(0). Thus, f(0) �= 0. Therefore, f ◦ f is injective and

it follows that f is also injective.

Put y = 1 in (1) to get f(f(1)) = f(0). Thus, f(1) = 0, since f is injective.

Put x = 1 in the original functional equation to find f(y + f(y)) = 0 = f(1). Since f is

injective, this implies y + f(y) = 1, and so f(y) = 1− y.

Finally, we verify that f(y) = 1− y satisfies the given functional equation via the check

LHS = 1− (xy + (1− y)) = y(1− x) = RHS.

Solution 2 (Angelo Di Pasquale)

As in Solution 1, we deduce equation (1) and the fact that f is bijective. Replacing y by

f(y) in the given functional equation, using (1), and then using symmetry yields

f(xf(y) + yf(0)) = f(y)f(x) = f(yf(x) + xf(0)).

Since f is injective, we deduce

xf(y) + yf(0) = yf(x) + xf(0). (2)

Put y = 1 in (2) to find f(x) = x(f(1) − f(0) + f(0). Hence, f(x) = ax + b for real

constants a and b. Putting this into the given functional equation yields

a(xy + ay + b) + b = y(ax+ b) ⇔ (a2 − b)y + b(a+ 1) = 0,

for all real numbers y. Thus, b = a2 and b(a + 1) = 0. Note that b = 0 implies a = 0,

which yields f(x) = 0, a solution we have already considered. Otherwise, a = −1, and

b = 1, which yields f(x) = 1− x. As in Solution 1, we may verify this is also a solution to

the functional equation.

Solution 3 (Alice Devillers and Angelo Di Pasquale)

Taking y = 0 yields

f(f(0)) = 0. (3)
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Taking y = f(0) and x = 0 and using (3) yields f(0) = f(0)2, so f(0) is 0 or 1.

Suppose f(0) = 0. Taking x = 0 in the original equation, we get f(f(y)) = 0 for all y.

Then applying f to the original equation, we get

0 = f(yf(x)). (4)

If there exists a with f(a) �= 0, take x = a and y = af(a)−1 in (4) to get that f(a) = 0, a

contradiction. So f is 0 everywhere.

Suppose now f(0) = 1. Taking x = 0 in the original equation, we get

f(f(y)) = y. (5)

Thus 0 = f(f(0)) = f(1). Taking x = 1 in the original equation, we get

f(y + f(y)) = yf(1) = 0. (6)

Applying f to (6) and using (5), we get y + f(y) = f(0) = 1. Hence f(y) = 1− y.

We can easily check that these two functions satisfy the functional equation.

Solution 4 (Chaitanya Rao)

We divide the problem into the two cases: f(0) = 0 and f(0) �= 0.

• If f(0) = 0, setting x = 0 in the functional equation gives f(f(y)) = 0 for all y. Then

applying f to both sides of the original equation gives 0 = f(yf(x)). Assuming f is

non-zero then x can be chosen so that yf(x) spans all real values z and we conclude

f(z) = 0, contradicting our assumption. We conclude f = 0 in this case and this

indeed satisfies the functional equation.

• Now suppose f(0) �= 0. Then setting x = 0, f(f(y)) = yf(0). If a �= b then

af(0) �= bf(0) from which f(f(a)) �= f(f(b)). We conclude f(a) �= f(b) and so f is

injective. The rest is as in the last part of Solution 1.

Solution 5 (Angelo Di Pasquale)

If f is not identically zero, let c satisfy f(c) �= 0. Putting x = c shows that the right side

of the functional equation covers all of R. Hence f is surjective.

Let k = f(0). Putting x = 0 yields f(f(y)) = ky for all y ∈ R. If k = 0, then f(f(y)) = 0

for all y ∈ R. But this impossible as f is surjective. So k �= 0.

Replacing y with f(y) in the given functional equation and using f(f(y)) = ky yields

f(xf(y) + ky) = f(y)f(x).

Applying f to both sides of the above and using symmetry (swapping x and y) yields

kxf(y) + k2y = f(f(y)f(x)) = f(f(x)f(y)) = kyf(x) + k2x.

Dividing by k and setting y = 1 shows that f is linear. Thus, f(x) = ax+ b for constants

a, b. Putting this into the given functional equation and equating coefficients yields the

two solutions f(x) = 0 and f(x) = 1− x.

6
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5. The sequence a1, a2, a3, . . . is defined by a1 = 1 and, for n ≥ 2,

an = (a1 + a2 + · · ·+ an−1)× n.

Prove that a2018 is divisible by 20182.

Solution 1 (Norman Do)

We will prove that an = n
2 × n! for all n ≥ 2. Let bn = a1 + a2 + · · · + an, so that the

equation defining the sequence becomes

bn − bn−1 = bn−1 × n.

Rearranging, we obtain the equation bn = (n+ 1)bn−1 for n ≥ 2.

We can repeatedly apply this equation to obtain

bn = (n+1)bn−1 = (n+1)nbn−2 = (n+1)n(n−1)bn−3 = · · · = (n+1)n(n−1) · · · 3b1 =
1

2
(n+1)!.

It follows that, for n ≥ 2,

an = bn − bn−1 =
1

2
(n+ 1)!− 1

2
n! =

n

2
× n!.

In particular, a2018 =
2018
2 × 2018! = 20182 × 2017!

2 , which is divisible by 20182.

Solution 2 (Alice Devillers, Kevin McAvaney and Alan Offer)

By definition, n divides an. We need to show that n also divides an
n . For all n > 2, and in

particular for n = 2018,

an
n

= a1 + a2 + · · ·+ an−2 + an−1

= a1 + a2 + · · ·+ an−2 + (a1 + a2 + · · ·+ an−2)× (n− 1)

= (a1 + a2 + · · ·+ an−2)× n.

Solution 3 (Angelo Di Pasquale)

We prove that an = n
2 × n! by induction. The base case n = 2 is true. If it is true for

2, 3, . . . , n− 1, then

an = n
n−1∑
i=1

ai = n

(
1 +

n−1∑
i=2

i · i!
2

)

= n

(
1 +

1

2

n−1∑
i=2

(i+ 1)!− i!

)
= n

(
1 +

1

2
(n!− 2!)

)
=

n · n!
2

.

Solution 4 (Angelo Di Pasquale)

We are given

an = (a1 + a2 + · · ·+ an−1)× n. (1)
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Replacing n with n+ 1 in (1) yields

an+1 = (a1 + a2 + · · ·+ an)× (n+ 1). (2)

Computing n× (2)− (n+ 1)× (1) yields for any n ≥ 2,

nan+1 − (n+ 1)an = n(n+ 1)an

⇒ an+1 =
(n+ 1)2

n
an. (3)

Applying (3) recursively yields, for any n ≥ 2,

an+1 =
(n+ 1)2

n
× n2

n− 1
× · · · × 32

2
× a2 =

(n+ 1) · (n+ 1)!

2
. (4)

Using formula (4), we finish as in Solution 1.

Solution 5 (Ivan Guo)

It is clear from induction that each term of the sequence a1, a2, a3, . . . is an integer, which

implies that n | an. Defining the integers bn = an
n , we have the equation

bn = b1 + 2b2 + · · ·+ (n− 2)bn−2 + (n− 1)bn−1 = bn−1 + (n− 1)bn−1 = nbn−1.

Thus n | bn, which implies that n2 | an.

Solution 6 (Daniel Mathews and Ian Wanless)

Since a1 + a2 + · · ·+ an−2 =
an−1

n−1 for n ≥ 3, we may rearrange the given equation as

an =

(
an−1

n− 1
+ an−1

)
× n =

n2an−1

n− 1
.

Since n and n − 1 are relatively prime, we know that an is divisible by n2 for all n ≥ 3.

So a2018 is divisible by 20182.

Solution 7 (Jamie Simpson)

Set Sn = a1 + a2 + · · ·+ an so that an = nSn−1 for n ≥ 2. Then Sn = Sn−1 + an = (n+

1)Sn−1, so that n+1 divides Sn for all n ≥ 2. Therefore (n+1)2 divides an+1 = (n+1)Sn

for all n ≥ 2. In particular 20182, divides S2018.

Solution 8 (Mike Clapper)

For n ≥ 2, an+1 = (a1+a2+· · ·+an)×(n+1). So we also have an = (a1+a2+· · ·+an−1)×n.

Subtracting these two equations yields

an+1 − an = (n+ 1)an + (a1 + a2 + · · ·+ an−1).

So we have

an+1 =

(
n+ 2 +

1

n

)
an =

(n+ 1)2

n
an.

Since n and n + 1 are relatively prime, we know that (n + 1)2 | an+1. In particular,

20182 | a2018.
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6. Let P , Q and R be three points on a circle C, such that PQ = PR and PQ > QR. Let D
be the circle with centre P that passes through Q and R. Suppose that the circle with

centre Q and passing through R intersects C again at X and D again at Y .

Prove that P , X and Y lie on a line.

Solution 1 (Angelo Di Pasquale)

In the following, we consider all angles to be directed. The result follows immediately from

∠Y PQ = ∠QPR = ∠XPQ.

The first equality is due to QR = QY , and so these equal chords subtend equal angles

in C. The second is due to QR = QX, and so these equal chords subtend equal angles at

the centre of D.

P Q

R

X

Y

Solution 2 (Alice Devillers and Daniel Mathews)

We need to prove that ∠QPX = ∠QPY .

• Since Q, Y, P,R are concyclic, ∠QPY = ∠QRY and ∠QPR = ∠QY R.

• Since the triangle QRY is isoceles, ∠QRY = ∠QY R.

• Since the triangles QPR and QPX are congruent (SSS), ∠QPX = ∠QPR.

Putting it all together, we obtain

∠QPY = ∠QRY = ∠QY R = ∠QPR = ∠QPX.

Solution 3 (Alan Offer)

We prove the claim in the more general situation that the centre of the third circle, which

we call K, need not be Q, but is free to be any point O on the circle D.

Let Z and P ′ be the points distinct from X and Y where the line XY meets the circles C
and D, respectively.

9
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Then

∠RP ′Z = ∠RP ′Y since P ′, Y , Z are collinear,

= ∠ROY since R, Y , P ′, O are on D,

= 2∠RXY since O is the centre of K,

= 2∠RXZ since X, Y , Z are collinear,

= ∠RPZ since P is the centre of C.

Therefore, R, Z, P and P ′ are concyclic, but since a circle through R and Z can meet

D in at most one point distinct from R, it follows that P = P ′. Hence X, P and Y are

collinear.

Solution 4 (Alan Offer)

We prove the claim in the more general situation that the centre of the third circle, which

we call K, need not be Q, but is free to be any point O on the circle D.

Apply an inversion about a circle with centre R and let P ′, O′, X ′ and Y ′ be the images

of P , O, X and Y , respectively. Since X is on C, the point X ′ is on the perpendicular

bisector of RP ′, and since X and Y are on K, both X ′ and Y ′ lie on the perpendicular

bisector of RO′, with Y ′ also lying on P ′O′, which is the image of D.

Since X is on the perpendicular bisectors of RP ′ and RO′, the triangles XRO′ and XRP ′

are isosceles, soX ′ is the centre of the circle passing through R, O′ and P ′. Thus ∠RP ′O′ =
1
2∠RX ′O′ = ∠RX ′Y ′. It follows that R, P ′, X ′ and Y ′ are concyclic, which under the

inversion, shows that P , X and Y are collinear.

10



Austral ian Mathemat ical  Olymp iad Committee

a department of the austral ian mathemat ics  trust

7. Let b1, b2, b3, . . . be a sequence of positive integers such that, for each positive integer n,

bn+1 is the square of the number of positive factors of bn (including 1 and bn). For example,

if b1 = 27, then b2 = 42 = 16, since 27 has four positive factors: 1, 3, 9 and 27.

Prove that if b1 > 1, then the sequence contains a term that is equal to 9.

Solution 1 (Angelo Di Pasquale)

For any perfect square m2, there is a bijection d ↔ m2

d between factors strictly less than

m and the factors strictly greater than m. Taking into acount that m | m2 too, we deduce

that all square numbers have an odd number of divisors. Thus bi is an odd perfect square

for i ≥ 3.

Suppose that i ≥ 3 and let bi =
∏

p2kii be the prime factorisation of bi. Then bi+1 =∏
(2ki + 1)2 ≥ 9. For any prime p ≥ 3, we have

p2k ≥ (2k + 1)2, (1)

with equality if and only if p = 3 and a = 1 — we will prove this statement below. It

follows that bi ≥ bi+1 with equality if and only if bi = 9. Thus, from b3 onward, the

sequence is strictly decreasing until it reaches the fixed point bi = 9.

Finally, we present two different ways of justifying equation (1).

Way 1. If a ≥ 2, then using the binomial theorem we have

p2k ≥ 32k = (1 + 8)k ≥ 1 +

(
k

1

)
· 8 +

(
k

2

)
· 82

= 32k2 − 24k + 1 > 4k2 + 4k + 1 = (2k + 1)2.

Moreover, the claim is trivial if k = 1.

Way 2. The claim is equivalent to pk ≥ 2k + 1, with equality if and only if p = 3 and

k = 1. This is obviously true for k = 1. Assume inductively that the claim is true for k.

Then we have

pk+1 = p · pk ≥ 3(2k + 1) > 2(k + 1) + 1.

Hence the result follows by induction on k.

Solution 2 (Ivan Guo)

Another way to prove that p2k ≥ (2k + 1)2 is to write it as pk ≥ (2k + 1), which is true

since

pk − 1 ≥ 3k − 1 = (3− 1)(3k−1 + 3k−2 + · · ·+ 1) ≥ 2(1 + 1 + · · ·+ 1) = 2k.

11
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8. Amy has a number of rocks such that the mass of each rock, in kilograms, is a positive

integer. The sum of the masses of the rocks is 2018 kilograms. Amy realises that it is

impossible to divide the rocks into two piles of 1009 kilograms.

What is the maximum possible number of rocks that Amy could have?

Assumptions and terminology. In all of the following solutions, we will assume that

masses are in kilograms and that rocks have positive integer mass. We call a collection of

rocks balanced if it is possible to divide the rocks into two piles of equal mass.

Solution 1 (Angelo Di Pasquale)

The answer is 1009.

If one of the rocks has mass 1010 and the remaining 1008 rocks each have mass 1, then it

is obvious that this collection of 1009 rocks is unbalanced, and yet the sum of the masses

is 2018. (Another possibility is that Amy has 1009 rocks each of mass 2.)

We show that if Amy has 1010 rocks, then they must be balanced, by proving the following

more general statement.

Let n be a positive integer. Any collection of at least n+1 rocks with total mass

2n is balanced.

The proof is by strong induction on n. The result is easily verified for n = 1.

Suppose that the result is true for all positive integers m with m < n, and suppose we

have a collection of at least n+ 1 rocks whose total mass is 2n. Suppose that exactly k of

the rocks have mass 1. Note that k ≥ 2. If all of the rocks have mass 1, then the result is

trivial. Suppose that there is a rock of mass w > 1. Note that w ≤ 2n− 2. The sum of all

the rocks is at least k × 1 + w + (n− k)× 2. But the sum of the rocks is equal to 2n. So

we have

2n ≥ k + w + 2(n− k) ⇔ k ≥ w. (1)

Case 1. Suppose w = 2x for some positive integer x.

Remove the rock of mass w to leave at least n rocks whose total mass is 2n − 2x. The

inductive assumption with m = n−x tells us that the remaining rocks can be divided into

two piles, each of mass n − x. As k ≥ 2x from (1), one of those piles contains at least x

unit rocks. Moving x of these unit rocks from one pile to the other yields piles of masses

n− 2x and n. Adding back the rock of mass w to the lighter pile yields the result.

Case 2. Suppose w = 2x+ 1 for some positive integer x.

Remove the rocks of mass w and 1 to leave at least n − 1 rocks whose total mass is

2n − 2x − 2. The inductive assumption with m = n − x − 1 tells us that the remaining

rocks can be divided into two piles of mass n−x− 1. As k ≥ 2x+1 from (1), one of those

piles has at least x unit masses. Moving x of these unit masses from one pile to the other

yields piles of masses n− 2x− 1 and n− 1. Adding back the rock of mass w to the lighter

pile, and the unit mass to the heavier pile yields the result.

Solution 2 (Angelo Di Pasquale)

12
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As in Solution 1, we can find a collection of 1009 rocks that is unbalanced. We show that

any collection of 1010 rocks is balanced.

Lemma. Any sequence of n positive integers contains a non-empty subsequence whose

sum is a multiple of n.

Proof. (This result is folklore.) Let the integers be a1, a2, . . . , an. Let si = a1+a2+· · ·+ai
for 1 ≤ i ≤ n. If si ≡ 0 (mod n) for some i, then we are done. Otherwise, by the pigeonhole

principle, si ≡ sj (mod n) for some i < j. Thus sj−si = ai+1+ai+2+ · · ·+aj is a multiple

of n.

For the problem at hand, remove a rock from the collection. Now we have 1009 rocks. By

the lemma, a non-empty subcollection of those rocks has mass equal to a multiple of 1009.

Since the total mass of the sub-collection is strictly less than 2018, it is equal to 1009.

Solution 3 (Angelo Di Pasquale and Ian Wanless)

We prove that an unbalanced collection of total mass 2n has at most n rocks.

Note that if one rock has mass n, then the collection is balanced. And if any rock has

mass greater than n, then the collection automatically has at most n rocks. Therefore we

may restrict ourselves to the case where all rocks have masses at most n− 1.

Let A and B be two buckets, each of which can contain a total mass of at most n. Suppose

that Amy starts putting the rocks in the buckets as follows. At each stage she chooses the

heaviest remaining rock, and if it can fit in one of the buckets, she puts it in.

Since Amy’s collection is unbalanced she will eventually reach a situation where she is

holding in her hand the heaviest remaining rock, say of mass w where 2 ≤ w ≤ n− 1, and

it cannot be put in either bucket.

Suppose that A contains j rocks of masses a1, a2, . . . , aj , and B contains k rocks of masses

b1, b2, . . . , bk. From Amy’s algorithm, we have

a1 + a2 + · · ·+ aj + w ≥ n+ 1 and b1 + b2 + · · ·+ bk + w ≥ n+ 1.

Hence, the sum of the masses of the rocks in the buckets and in Amy’s hand is at least

2n+ 2− w. Since the total mass is 2n, there are at most w − 2 rocks remaining that are

not in a bucket nor in Amy’s hand. Hence, the total number of rocks in Amy’s collection

is at most j + k + w − 1. We claim that this number is at most n.

From Amy’s algorithm, we also have jw ≤ a1+a2+ · · ·+aj ≤ n−1. Similarly kw ≤ n−1.

Hence j + k ≤ 2(n−1)
w . Hence, it suffices to show

2(n− 1)

w
+ w − 1 ≤ n ⇔ (w − 2)(w − (n− 1)) ≤ 0.

Since the final inequality is true for 2 ≤ w ≤ n− 1, we are done.

Solution 4 (Ivan Guo)

The example for 1009 is as in Solution 1. We focus on showing that any collection of 1010

rocks is balanced. Let the heaviest rock be K. We must have 1 < K ≤ 1009. If there are

n ≤ 1009 unit mass rocks, then 2018−K − n ≥ 2(1009− n), which implies n ≥ K. Now
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consider the set S of rocks with mass greater than 1. Let us take rocks from S one by one

and place them in a pile, while tracking the total mass of the pile. The total mass starts

at 0 and finishes at 2018− n ≥ 1009. Since no rock has more than K mass, the sequence

of total mass must have at least one value in the range r ∈ [1009−K, 1009]. If we pause

when the pile reaches r, we can always add 1009− r < K unit mass rocks to reach a pile

of mass 1009, as required.

Solution 5 (Daniel Mathews)

We show that a collection of k + 1 rocks with total mass 2k must be balanced. Let the

rocks have masses w1, w2, . . . , wk+1. Consider the k + 1 collections of rocks

{w1}, {w1, w2}, {w1, w2, w3}, . . . , {w1, w2, . . . , wk+1}.

These collections all have distinct total mass lying between 1 and 2k inclusive. Partition

the numbers {1, 2, . . . , 2k} into k pairs {1, k+1}, {2, k+2}, . . . , {k, 2k}. By the pigeonhole

principle, any k + 1 numbers from 1, 2, . . . , 2k must contain both numbers from at least

one of these pairs. The total masses of our k + 1 collections are k + 1 numbers from 1 to

2k, hence there exist two collections of rocks {w1, w2, . . . , wi} and {w1, w2, . . . , wj} (with

i < j) such that w1+w2+· · ·+wi = w1+w2+· · ·+wj+k. Thus, wi+1+wi+2+· · ·+wj = k,

and the collection of rocks {wi+1, wi+2, . . . , wj} has total mass k, exactly half the total

mass of all the rocks. So the rocks are balanced.
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