1. 2014 S6
If \(x, x^2\) and \(x^3\) lie on a number line in the order shown below, which of the following could be the value of \(x\)?

\[
\begin{array}{c}
\bullet & \bullet & \bullet \\
\text{x³} & \text{x²} & \text{x}
\end{array}
\]

(A) \(-2\) (B) \(-\frac{1}{2}\) (C) \(\frac{3}{4}\) (D) 1 (E) \(\frac{3}{2}\)

We have \(0 < x^2 < x\) so that \(x\) is positive and \(x < 1\). The only possibility is \(x = \frac{3}{4}\),
and \(x^3 = \frac{27}{64}, x^2 = \frac{9}{16} = \frac{36}{64}\) and \(x = \frac{3}{4} = \frac{48}{64}\),
hence (C).

2. 2014 S10
If \(\frac{p}{p - 2q} = 3\) then \(\frac{p}{q}\) equals

(A) \(-3\) (B) 3 (C) \(\frac{1}{3}\) (D) \(\frac{2}{3}\) (E) 2

We have \(p = 3(p - 2q)\), so \(6q = 2p\) and \(p = 3q\). Then \(\frac{p}{q} = 3\),
hence (B).

3. 2014 S15
In the diagram, \(PS = 5, PQ = 3, \triangle PQS\) is right-angled at \(Q, \angle QSR = 30^\circ\) and \(QR = RS\).
The length of \(RS\) is

(A) \(\frac{\sqrt{3}}{2}\) (B) \(\sqrt{3}\) (C) 2 (D) \(\frac{4\sqrt{3}}{3}\) (E) 4
Due to the right-angled triangle $\triangle PQS$, Pythagoras’ theorem gives $QS = 4$. Then $\triangle QRS$ is isosceles, so its altitude RT bisects QS.

Now, $\triangle SRT$ is standard $30^\circ, 60^\circ, 90^\circ$ triangle with $RT : RS : ST = 1 : 2 : \sqrt{3}$ so that $x = RS = \frac{2}{\sqrt{3}}ST = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$, hence (D).

Comment
This problem can also be solved using trigonometry: $x = \frac{2}{\cos 30^\circ} = \frac{4}{\sqrt{3}}$.

4. 2014 S20

Given that $f_1(x) = \frac{x}{x + 1}$ and $f_{n+1}(x) = f_1(f_n(x))$, then $f_{2014}(x)$ equals

(A) $\frac{x}{2014x + 1}$ (B) $\frac{2014x}{2014x + 1}$ (C) $\frac{x}{x + 2014}$ (D) $\frac{2014x}{x + 1}$ (E) $\frac{x}{2014(x + 1)}$

Alternative 1

$f_2(x) = f\left(\frac{x}{x + 1}\right) = \frac{x}{x + 1} = \frac{x}{x + x + 1} = \frac{x}{2x + 1}$

$f_3(x) = \frac{x}{2x + 1} + 1 = \frac{x + 2x + 1}{3x + 1}$

and in general, by induction

$f_n(x) = \frac{x}{nx + 1} \Rightarrow f_{n+1}(x) = \frac{x}{nx + 1} + 1 = \frac{x}{x + nx + 1} = \frac{x}{(n + 1)x + 1}$,

so $f_{2014}(x) = \frac{x}{2014x + 1}$, hence (A).

Alternative 2

Consider $\frac{1}{f_n(x)}$.

$$\frac{1}{f_1(x)} = 1 + \frac{1}{x} \quad \Rightarrow \quad \frac{1}{f_{n+1}(x)} = f_1(f_n(x)) = 1 + \frac{1}{f_n(x)}$$

$$\Rightarrow \quad \frac{1}{f_{2014}(x)} = 1 + \frac{1}{f_{2013}(x)} = 2 + \frac{1}{f_{2012}(x)} = \cdots$$

$$\cdots = 2013 + \frac{1}{f_1(x)} = 2014 + \frac{1}{x} = \frac{2014x + 1}{x}$$

Hence $f_{2014}(x) = \frac{x}{2014x + 1}$, hence (A).
5. **2014 S25**

The sequence

\[2, 2^2, 2^{2^2}, 2^{2^{2^2}}, \ldots \]

is defined by \(a_1 = 2 \) and \(a_{n+1} = 2^{a_n} \) for all \(n \geq 1 \). What is the first term in the sequence greater than 1000?

(A) \(a_4 = 2^{2^{2^2}} \)
(B) \(a_5 = 2^{2^{2^{2^2}}} \)
(C) \(a_6 = 2^{2^{2^{2^{2^2}}}} \)
(D) \(a_7 = 2^{2^{2^{2^{2^{2^2}}}}} \)
(E) \(a_8 = 2^{2^{2^{2^{2^{2^{2^{2^2}}}}}}} \)

We want \(a_n > 1000^{1000} = 10^{3000} \). We know that \(a_1 = 2, a_2 = 2^2 = 4, a_3 = 2^4 = 16 \) and \(a_4 = 2^{16} = 65536 \), all less than \(10^{3000} \). Also \(2^{10} = 1024 > 10^3 \), so that we can estimate \(a_5 \),

\[a_5 = 2^{65536} = (2^{10})^{6553} 2^6 > (10^3)^{6553} 2^6 = 64 \times 10^{19659} \]

This is greater than \(10^{3000} \), hence (B).

6. **2014 S26**

What is the largest three-digit number with the property that the number is equal to the sum of its hundreds digit, the square of its tens digit and the cube of its units digit?

Alternative 1

Let the number be \(abc \).

Then

\[
\begin{align*}
100a + 10b + c &= a + b^2 + c^3 \\
99a + 10b - b^2 &= c(c^2 - 1) \\
99a + b(10 - b) &= (c - 1)c(c + 1)
\end{align*}
\]

Consider the possibilities:

<table>
<thead>
<tr>
<th>99a</th>
<th>b(10 - b)</th>
<th>(c - 1)c(c + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 × 1 = 99</td>
<td>1 × 9 = 9</td>
<td>1 × 2 × 3 = 6</td>
</tr>
<tr>
<td>99 × 2 = 198</td>
<td>2 × 8 = 16</td>
<td>2 × 3 × 4 = 24</td>
</tr>
<tr>
<td>99 × 3 = 297</td>
<td>3 × 7 = 21</td>
<td>3 × 4 × 5 = 60</td>
</tr>
<tr>
<td>99 × 4 = 396</td>
<td>4 × 6 = 24</td>
<td>4 × 5 × 6 = 120</td>
</tr>
<tr>
<td>99 × 5 = 495</td>
<td>5 × 5 = 25</td>
<td>5 × 6 × 7 = 210</td>
</tr>
<tr>
<td>99 × 6 = 594</td>
<td>6 × 4 = 24</td>
<td>6 × 7 × 8 = 336</td>
</tr>
<tr>
<td>99 × 7 = 693</td>
<td>7 × 3 = 21</td>
<td>7 × 8 × 9 = 504</td>
</tr>
<tr>
<td>99 × 8 = 792</td>
<td>8 × 2 = 16</td>
<td>8 × 9 × 10 = 720</td>
</tr>
<tr>
<td>99 × 9 = 891</td>
<td>9 × 1 = 9</td>
<td></td>
</tr>
</tbody>
</table>

Looking at the possibilities for \(99a + b(10 - b) = (c - 1)c(c + 1) \), we have two:

\begin{align*}
99 + 21 &= 120 \implies a = 1, b = 3 \text{ or } 7, c = 5 \implies n = 135 \text{ or } n = 175. \\
495 + 9 &= 504 \implies a = 5, b = 1 \text{ or } 9, c = 8 \implies n = 518 \text{ or } n = 598.
\end{align*}

So, there are four 3-digit numbers which satisfy the requirements and the largest of these four numbers is 598,

hence (598).
Alternative 2

The number abc is equal to $a + b^2 + c^3$, and these are the possible values of b^2 and c^3:

<table>
<thead>
<tr>
<th>Digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>81</td>
</tr>
<tr>
<td>Cube</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>27</td>
<td>64</td>
<td>125</td>
<td>216</td>
<td>343</td>
<td>512</td>
<td>729</td>
</tr>
</tbody>
</table>

We try these numbers in an addition grid, trying the large values of c first, then filling in possible values for a and b. This trial-and-error search is presented here as a tree.

The largest solution found is 598, and any solutions on branches $c = 7, c = 6, \ldots, c = 1$ must be less than this, hence (598).