Find all real numbers r for which there exists exactly one real number a such that when

$$(x + a)(x^2 + rx + 1)$$

is expanded to yield a cubic polynomial, all of its coefficients are greater than or equal to zero.

For each positive integer n, the nth triangular number is the sum of the first n positive integers. Let a, b, c be three consecutive triangular numbers with $a < b < c$.

Prove that if $a + b + c$ is a triangular number, then b is three times a triangular number.

Let A, B, C, D, E be five points in order on a circle K. Suppose that $AB = CD$ and $BC = DE$. Let the chords AD and BE intersect at the point P.

Prove that the circumcentre of triangle AEP lies on K.

Let Q be a point inside the convex polygon $P_1P_2 \cdots P_{1000}$. For each $i = 1, 2, \ldots, 1000$, extend the line P_iQ until it meets the polygon again at a point X_i. Suppose that none of the points $X_1, X_2, \ldots, X_{1000}$ is a vertex of the polygon.

Prove that there is at least one side of the polygon that does not contain any of the points $X_1, X_2, \ldots, X_{1000}$.
AUSTRALIAN MATHEMATICS TRUST

Australian Mathematical Olympiad
2019

DAY 2
Wednesday, 6 February 2019
Time allowed: 4 hours
No calculators are to be used.
Each question is worth seven points.

5. A fancy triangle is an equilateral triangular array of integers such that the sum of the three numbers in any unit equilateral triangle is a multiple of 3. For example,

\[
\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 0 \\
5 & 7 & 3 \\
\end{array}
\]

is a fancy triangle with three rows because the sum of the numbers in each of the following four unit equilateral triangles is a multiple of 3.

\[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
2 & 5 & 7 \\
\end{array}
\]

Suppose that a fancy triangle has ten rows and that exactly \(n \) of the numbers in the triangle are multiples of 3.
Determine all possible values for \(n \).

6. Let \(K \) be the circle passing through all four corners of a square \(ABCD \). Let \(P \) be a point on the minor arc \(CD \), different from \(C \) and \(D \). The line \(AP \) meets the line \(BD \) at \(X \) and the line \(CP \) meets the line \(BD \) at \(Y \). Let \(M \) be the midpoint of \(XY \).
Prove that \(MP \) is tangent to \(K \).

7. Akshay writes a sequence \(a_1, a_2, \ldots, a_{100} \) of integers in which the first and last terms are equal to 0. Except for the first and last terms, each term \(a_i \) is larger than the average of its neighbours \(a_{i-1} \) and \(a_{i+1} \).
What is the smallest possible value for the term \(a_{19} \)?

8. Let \(n = 16^r - 4^r + 1 \) for some positive integer \(r \).
Prove that \(2^n - 1 \) is divisible by \(n \).
1. Find all real numbers r for which there exists exactly one real number a such that when

$$(x + a)(x^2 + rx + 1)$$

is expanded to yield a cubic polynomial, all of its coefficients are greater than or equal to zero.

Solution 1 (Angelo Di Pasquale)

Answer: $r = -1$.

Expanding the brackets, we see that we want the following three inequalities to be true.

1. $a \geq 0$ (constant term)
2. $ar + 1 \geq 0$ (coefficient of x)
3. $a + r \geq 0$ (coefficient of x^2)

If $r \geq 0$, then any $a \geq 0$ satisfies (1), (2), and (3).

It remains to address $r < 0$. In this case note that (3) immediately implies (1). So we only need to consider (2) and (3). Since $r < 0$, inequalities (2) and (3) are equivalent to the following.

4. $a \leq \frac{-1}{r}$
5. $a \geq -r$

Hence, we seek all values of $r < 0$ such that there is exactly one real number a satisfying

$$-r \leq a \leq \frac{-1}{r}.$$

(6)

Thus $-r = \frac{-1}{r}$, which implies $r = \pm 1$. Since $r < 0$ we have $r = -1$. This implies that the only corresponding value of a is $a = 1$.

It only remains to observe that

$$(x + 1)(x^2 - x + 1) = x^3 + 1,$$

which has no negative coefficients.

Solution 2 (Alan Offer)

Expanded, the cubic is

$$x^3 + (a + r)x^2 + (ar + 1)x + a.$$

Plotted on a Cartesian plane with a on the horizontal axis and r on the vertical axis, the condition that $a + r \geq 0$ is satisfied by the points in the region above and right of the line $a + r = 0$. Similarly, the condition that $ar + 1 \geq 0$ corresponds to the region between the two branches of the hyperbola $r = -1/a$.

The Mathematics/Informatics Olympiads are supported by the Australian Government through the National Innovation and Science Agenda. © 2019 Australian Mathematics Trust
The intersection of these two regions is then where both of the coefficients $a + r$ and $ar + 1$ are non-negative, so we are being asked for the horizontal coordinates r at which a vertical line meets this region in exactly one point, and this occurs at $r = -1$, where the line and the hyperbola meet at $(-1, 1)$. (Notice that the coefficient a is then also non-negative.)
2. For each positive integer n, the nth triangular number is the sum of the first n positive integers. Let a, b, c be three consecutive triangular numbers with $a < b < c$.

Prove that if $a + b + c$ is a triangular number, then b is three times a triangular number.

Solution 1 (Mike Clapper)

Let $T_m = T_{n-1} + T_n + T_{n+1}$.

Then $\frac{m}{2}(m+1) = \frac{n}{2}(n-1) + \frac{n}{2}(n+1) + \frac{n+1}{2}(n+2)$ which simplifies to $3(n^2 + n) + 2 = m^2 + m$.

Considering this equation modulo 3, we see that the LHS $\equiv 2 \pmod{3}$.

This is only possible if $m \equiv 1 \pmod{3}$ so we can let $m = 3s + 1$ for some integer s.

Hence, $3(n^2 + n) + 2 = (3s + 1)(3s + 2)$ giving $n^2 + n = 3(s^2 + s)$ and $T_n = 3T_s$.

Solution 2 (Ivan Guo)

Instead of triangular numbers, it suffices to double everything and work only with numbers of the form $n(n+1)$ where $n \geq 1$. The required condition can be rewritten as

$$n(n-1) + n(n+1) + (n+1)(n+2) = (m+1)(m+2) \iff 3n^2 + 3n = m^2 + 3m.$$

So $3 | m$. Writing $m = 3s$ yields $n^2 + n = 3(s^2 + s)$, as required. (Note that we need to check $s \geq 1$ but this is clear since both sides are positive here.)
3. Let A, B, C, D, E be five points in order on a circle K. Suppose that $AB = CD$ and $BC = DE$. Let the chords AD and BE intersect at the point P.

Prove that the circumcentre of triangle AEP lies on K.

Solution 1 (Angelo Di Pasquale)

Since $AB = CD$ and $ABCD$ is cyclic, it follows that $ABCD$ is an isosceles trapezium with $AD \parallel BC$. Similarly, $BE \parallel CD$.

Let O be the midpoint of arc AE of circle $ABCDE$. Thus $OA = OE$. Let Q be second intersection point of line AO with circle AEP. Let $x = \angle BPA$. We calculate the following angles.

$$
\angle CDA = x \quad \text{(} BE \parallel CD \text{)}
$$
$$
\angle DAB = x \quad \text{(isosceles trapezium } ABCD\text{)}
$$
$$
\angle EQA = x \quad \text{(} AQEP \text{ cyclic)}
$$
$$
\angle ABP = 180^\circ - 2x \quad \text{(angle sum } \triangle ABP\text{)}
$$
$$
\angle QOE = 180^\circ - 2x \quad \text{(} ABEO \text{ cyclic)}
$$
$$
\angle OEQ = x \quad \text{(angle sum } \triangle OQE\text{)}
$$

Hence, $\triangle OQE$ is isosceles with $OQ = OE$. Since $OQ = OE = OA$, it follows circle AEQ has centre O. Since P also lies on this circle, we may conclude that O is the circumcentre of $\triangle AEP$.

Solution 2 (Alice Devillers)

We need to prove that the centre O of the circumcircle to AEP satisfies $\angle AOE = 180 - \angle ADE$.

We will repeatedly use the angles intercepting arcs of the same length are the same: for instance $\angle ABC = \angle BCD = \angle CDE$.

© 2019 Australian Mathematics Trust
Since the sum of the angles in a pentagon is 540°, so
\[
540° = \angle ABC + \angle BCD + \angle CDE + \angle DEA + \angle EAB
= 3\angle CDE + \angle DEB + \angle BEA + \angle EAD + \angle DAB
= 3\angle CDE + 180° - \angle DCB + \angle BEA + \angle EAD + 180° - \angle DCB
= 360° + \angle CDE + 180° - \angle APE.
\]
Thus, \(\angle CDE = \angle APE\).

Because of the circumcircle, \(\angle AOE = 360° - 2\angle APE = 360° - 2\angle CDE\). On the other hand,
\[\angle ADE = \angle CDE - \angle ADC = \angle CDE - (180° - \triangle ABC) = 2\angle CDE - 180°.\]
Hence, \(\angle AOE + \angle ADE = 180°\) and we are done.

Solution 3 (Angelo Di Pasquale)

With notation in solution 1, we have \(\angle APE = 180° - x\) and \(\angle EOA = 2x\). Thus \(\angle AEO\) (reflex) = 360° – 2x = 2\angle APE. Consider any point X that satisfies the following.

- X and P lie on opposite sides of line AE.
- X lies on the perpendicular bisector of AE.
- \(\angle AXE\) (reflex) = 2\angle APE.

There is only one point X that has these properties. This is because as X moves on the perpendicular bisector of AE away from (closer to) AE, the reflex angle AXE gets larger (smaller). The circumcentre of \(\triangle AEP\) and point O both have the above properties. Hence, O is the circumcentre of \(\triangle AEP\).

Solution 4 (Angelo Di Pasquale)

(Variation on the alternative solution) Let \(x = \angle BPA\). Then \(\angle CDA = x\) since \(CD \parallel BE\) from isosceles trapezium \(BCDE\). Also \(\angle DAB = x\) from isosceles trapezium \(ABCD\). From the angle sum in \(\triangle ABP\), we deduce \(\angle ABE = 180° - 2x\).

We also have \(\angle APE = 180° - x\). Let O be the circumcentre of \(\triangle AEP\). Thus reflex angle \(\angle AOE = 2\angle APE = 360° - 2x\), and so \(\angle EOA = 2x\). Since \(\angle ABE + \angle EOA = 180°\), it follows that \(ABEO\) is cyclic. Thus O lies on circle(\(ABE\)) = circle(\(ABCDE\)).

Solution 5 (Ivan Guo)

The given length conditions imply that \(ABCD\) and \(BCDE\) are isosceles trapezia, while \(BCDP\) is a parallelogram. Hence, let \(\angle ABC = \angle BCD = \angle CDE = \angle EPA = \theta\). Construct O to be the midpoint of the arc AE. Since in a cyclic hexagon, the three non-adjacent angles add up to 360°, we have 360° – \(\angle EOA = 2\theta = 2\angle EPA\). Therefore, O is the circumcentre of \(EPA\).

Solution 6 (Daniel Mathews)
Let the given circle be Γ, with centre O, and let $a = \angle DAE$ and $b = \angle BEA$. Then a and b are the angles subtended by the arcs DE and AB respectively; note $a, b < 90^\circ$. As $AB = CD$ then $\angle CED = b$, and as $BC = DE$ then $\angle BEC = a$.

Now AE subtends $\angle APE = 180 - \angle AEP - \angle EAP = 180 - a - b$ at P, which is obtuse. Hence, AE subtends $a + b$ at points of Γ on the other side of AE from P, and subtends $2a + 2b$ at O. Thus O lies on the other side of AE from P, and satisfies $\angle AOE = 2a + 2b$.

On the other hand, AE subtends an angle of $180^\circ - 2a - 2b$ at D, since $\angle ADE = 180 - \angle DAE - \angle AED = 180 - \angle DAE - \angle AEP - \angle BEC - \angle CED = 180 - 2a - 2b$,

and hence, subtends $2a + 2b$ at points of Γ on the other side of AE from P. Thus O lies on Γ.

Solution 7 (Kevin McAvaney)

From isosceles trapezia $ABCD$ and $BCDE$, triangles ABP and EDP are isosceles and equiangular. Let DO be the perpendicular bisector of EP with O on the circumcircle of $ABCDE$. Then DO bisects angle PDE. Angles ODE and OBE are equal. Hence, BO bisects angle ABP. Therefore, BO is the perpendicular bisector of AP. Hence, O the circumcentre of triangle AEP.

Solution 8 (Alan Offer)

Let O be the centre of the circumcircle of triangle AEP. In terms of directed angles, it follows that $\angle AOE = 2\angle APE$. Now O is on the circumcircle of $ABCDE$ if $\angle AOE = \angle ABE$, so it suffices to show that $\angle ABE = 2\angle APE$. With this in mind, we have

$$2\angle APE = 2\angle ABE + 2\angle DAB$$

(1) (exterior angle of $\triangle ABP$)

$$= \angle ABE + \angle ACE + 2\angle DAB$$

(2) ($ABCE$ cyclic)

$$= \angle ABE + \angle ACE + (\angle DAC + \angle CAB) + \angle DAB$$

(3)

$$= \angle ABE + \angle DAB + (\angle ACE + \angle BCA + \angle ECD)$$

(4) (arcs $DC = BA$ and $CB = ED$)

$$= \angle ABE + (\angle DAB + \angle BCD)$$

(5)

$$= \angle ABE$$

(6) ($ABCD$ cyclic).
4. Let Q be a point inside the convex polygon $P_1P_2 \cdots P_{1000}$. For each $i = 1, 2, \ldots, 1000$, extend the line P_iQ until it meets the polygon again at a point X_i. Suppose that none of the points $X_1, X_2, \ldots, X_{1000}$ is a vertex of the polygon.

Prove that there is at least one side of the polygon that does not contain any of the points $X_1, X_2, \ldots, X_{1000}$.

Solution 1

Since Q does not lie on a diagonal of the polygon, each of the points $X_1, X_2, \ldots, X_{1000}$ lies on the interior of a side of the polygon. Suppose that X_1 lies on the side P_iP_{i+1}. Without loss of generality, we may assume that $i \leq 500$; otherwise, we could relabel the vertices in the opposite orientation instead.

Then the points P_2, P_3, \ldots, P_i lie on one side of the line P_1Q, which means that the points X_2, X_3, \ldots, X_i must lie on the other side of the line P_1Q. So the i points $X_1, X_2, X_3, \ldots, X_i$ must lie on the 1001 $- i$ sides $P_iP_{i+1}, P_{i+1}P_{i+2}, \ldots, P_{1000}P_1$. Furthermore, no other point X_j can lie on one of these sides, since they lie on the other side of the line P_1Q. However, since $i \leq 500$, we have $i < 1001 - i$. It follows that there must be at least one of the sides $P_iP_{i+1}, P_{i+1}P_{i+2}, \ldots, P_{1000}P_1$ that does not contain any of the points $X_1, X_2, \ldots, X_{1000}$.

Solution 2 (Angelo Di Pasquale)

Define a butterfly to be the region formed by the two triangles cut out by a pair of consecutive main diagonals of the polygon. If Q lies inside a butterfly, then it is easy to see that the conclusion of the problem is true since a line that enters a triangle must exit it somewhere.

To finish, it suffices to prove that the point Q lies inside a butterfly. For any directed line AB, we define its positive side to be the half-plane of points X such that $0 < \angle BAX < 180^\circ$. We also define its negative side to be the half-plane of points X such that $180^\circ < \angle BAX < 360^\circ$. In both cases, the angle is directed anticlockwise modulo 360°.

Without loss of generality, suppose that Q lies on the positive side of the directed line P_0P_{500}, where we consider all subscripts modulo 1000. Then Q lies on the negative side of the directed line $P_{500}P_0$. Hence, there exists an integer i with $0 \leq i \leq 499$ such that Q lies on the positive side of P_iP_{i+500} but on the negative side of $P_{i+1}P_{i+501}$. Thus, Q lies inside the butterfly defined by P_iP_{i+500} and $P_{i+1}P_{i+501}$.

Solution 3 (Kevin McAvaney)

We will prove the statement more generally for a convex $2m$-gon. Suppose that each side of the polygon contains at least one of the points X_1, X_2, \ldots, X_{2m} on its interior. Then
each side contains exactly one of the points X_1, X_2, \ldots, X_{2m} on its interior. Otherwise, one of the lines through Q passes through an interior point of at least two polygon sides and this contradicts the convexity of the polygon.

Label the lines through Q in clockwise order $L_1, L_2, L_3, \ldots, L_{2m}$. Label the vertices of the polygon in clockwise order $P_1, P_2, P_3, \ldots, P_{2m}$. Without loss of generality, suppose that L_1 passes through P_1. Then L_2 passes through an interior point of the side P_1P_2 and L_3 passes through P_2. Hence, L_4 passes through an interior point of side P_2P_3 and L_5 passes through P_3. Continuing in the same manner, we see that only the lines indexed by odd integers pass through vertices of the polygon and this produces the desired contradiction.

Solution 4 (Chaitanya Rao)

For notational convenience let $P_{1000+i} = P_i$ for $i \in \{1, 2, \ldots, 1000\}$. The diagonal P_1P_{i+500} joining opposite vertices divides the convex polygon into the following two 501-gons:

$P_1P_2 \cdots P_iP_{i+500}P_{i+501} \cdots P_{1000}$ and $P_1P_{i+1}P_{i+2} \cdots P_{i+500}$. Since Q is not on a diagonal and the original polygon is convex, Q lies inside one of these polygons and outside the other.

Define a function $f : \{1, 2, \ldots, 1000\} \rightarrow \{0, 1\}$ by

$$f(i) = \begin{cases} 1, & \text{if } Q \text{ lies inside } P_1P_2 \cdots P_iP_{i+500}P_{i+501} \cdots P_{1000}, \\ 0, & \text{otherwise}. \end{cases}$$

Note that $f(i) = 1 - f(i + 500)$, since Q is inside exactly one of the two 501-gons $P_1P_2 \cdots P_iP_{i+500}P_{i+501} \cdots P_{1000}$ and $P_1P_{i+1}P_{i+2} \cdots P_{i+500}$. Hence, the function f is not constant and there exists some j for which $f(j) = 0$ and $f(j + 1) = 1$, as shown in the following diagram.

We then find that segment P_jP_{j+1} contains both X_{j+500} and X_{j+501} since they are the bases of internal cevians of triangles $P_jP_{j+500}P_{j+1}$ and $P_jP_{j+501}P_{j+1}$, respectively. Note that both triangles have Q in the interior of their intersection. Since Q is not on a diagonal, none of the points X_i is a vertex of the the polygon and we conclude that there exists another side of the polygon that does not contain any of the points $X_1, X_2, \ldots, X_{1000}$.

Solution 5 (Ian Wanless)

Consider the diagonal $d = P_1P_m$. By assumption, Q does not lie on d. Assume that Q lies on the same side of d as P_{2m} does, since the other case is equivalent after relabelling the vertices. Let $1 \leq i \leq m + 1$ and note that the ray from P_i to Q hits d before it hits Q. This means that the point X_i is on the same side of d as Q. But this means that the
$m + 1$ points $X_1, X_2, \ldots, X_{m+1}$ lie on the m sides $P_{m+1}P_{m+2}, \ldots, P_{2m-1}P_{2m}, P_{2m}P_1$. By the pigeonhole principle, at least two of points $X_1, X_2, \ldots, X_{m+1}$ lie on the same side of the polygon. By a second application of the pigeonhole principle, it follows that there is some side of the polygon that contains none of the points X_1, X_2, \ldots, X_{2m}.
5. A fancy triangle is an equilateral triangular array of integers such that the sum of the three numbers in any unit equilateral triangle is a multiple of 3. For example,

\[
\begin{array}{ccc}
1 \\
0 & 2 \\
5 & 7 & 3
\end{array}
\]
is a fancy triangle with three rows because the sum of the numbers in each of the following four unit equilateral triangles is a multiple of 3.

\[
\begin{array}{cccc}
1 & 0 & 2 \\
0 & 2 & 0 \\
5 & 7 & 7 & 3
\end{array}
\]

Suppose that a fancy triangle has ten rows and that exactly \(n \) of the numbers in the triangle are multiples of 3. Determine all possible values for \(n \).

Solution (Angelo Di Pasquale)

Answers: \(n = 0, 18, 19, \) or 55

Consider the four numbers in any two unit equilateral triangles that share a common edge as shown in the diagram.

\[
\begin{array}{ccc}
u \\
v & w \\
x
\end{array}
\]

Since \(u + v + w \equiv 0 \equiv v + w + x \pmod{3} \), it follows that \(u \equiv x \pmod{3} \). Using this observation we deduce that if we reduce the entries of the triangle modulo 3, it takes the following form.

\[
\begin{array}{cccc}
u & v & w \\
w & u & v \\
u & v & w & u \\
v & w & u & v & w \\
w & u & v & w & u & v \\
u & v & w & u & v & w & u \\
v & w & u & v & w & u & v \\
w & u & v & w & u & v & w & u \\
u & v & w & u & v & w & u & v \\
u & v & w & u & v & w & u & v
\end{array}
\]

Note that the triangular array is fancy if and only if \(3 \mid u + v + w \). Reducing modulo 3, we have the cases \((u,v,w) = (0,0,0), (1,1,1), (2,2,2) \), or any permutation of \((0,1,2) \).

- If \((u,v,w) = (0,0,0) \), then \(n = 55 \).
- If \((u,v,w) = (1,1,1) \) or \((2,2,2) \), then \(n = 0 \).
- If \((u,v,w) = (0,1,2) \) or \((0,2,1) \), then \(n = 19 \).
- If \((u,v,w) = (1,0,2) \) or \((1,2,0) \) or \((2,1,0) \) or \((2,0,1) \), then \(n = 18 \).
6. Let \mathcal{K} be the circle passing through all four corners of a square $ABCD$. Let P be a point on the minor arc CD, different from C and D. The line AP meets the line BD at X and the line CP meets the line BD at Y. Let M be the midpoint of XY.

Prove that MP is tangent to \mathcal{K}.

Solution 1

By the converse of the alternate segment theorem, it suffices to prove that $\angle MPA = \angle ABP$.

Let $\angle AXB = \angle MXP = \theta$. Since AC is a diameter of the circle, $\angle APC = \angle APY = 90^\circ$. So M is the midpoint of the hypotenuse of the right-angled triangle XYP. It follows that $MX = MP$, so $\angle MPA = \angle MPX = \angle MXP = \theta$.

Now observe that $\angle AXD = 180^\circ - \theta$ and $\angle XDA = 45^\circ$, so $\angle DAP = \angle DAX = \theta - 45^\circ$. By cyclic quadrilateral $ABPD$, we have $\angle DBP = \angle DAP = \theta - 45^\circ$. Therefore, $\angle ABP = \angle ABD + \angle DBP = 45^\circ + (\theta - 45^\circ) = \theta$.

So we have shown that $\angle MPA = \angle ABP = \theta$, as required.

Solution 2 (Alice Devillers)

Pick coordinates such that $A = (0, -1)$, $B = (-1, 0)$, $C = (0, 1)$, $D = (0, 1)$, so $P = (\cos \theta, \sin \theta)$ where θ is between 0 and $\pi/2$. We easily compute the equations of AP: $y + 1 = \frac{\sin \theta + 1}{\cos \theta}x$ and CP: $y - 1 = \frac{\sin \theta - 1}{\cos \theta}x$, while BD is just $y = 0$. Thus $X = \left(\frac{\cos \theta}{\sin \theta + 1}, 0\right)$ and $Y = \left(-\frac{1}{\sin \theta}, 0\right)$. The middle point M is $X = \left(\frac{1}{\sin \theta}, 0\right)$ (here we used $\sin^2 \theta - 1 = -\cos^2 \theta$ and $\cos \theta \neq 0$). If we take the dot product of the vectors OP and MP, we get 0 so MP is tangent to the circle of radius 1 centred at O.

Solution 2 (Angelo Di Pasquale)

Let $O = AC \cap BD$. Note that $AC \perp BD$, and so $\angle AOX = 90^\circ$. Also $\angle AP \perp PC$ because AC is a diameter of \mathcal{K}. Thus $\angle APY = 90^\circ = \angle AOX$, and so $AOPY$ is cyclic.
As $\angle XPY = 90^\circ$ and M is the midpoint of XY, we have M is the centre of circle PXY. Thus $MX = MP = MY$.

From $MY = MP$ and cyclic $AOPY$, we find $\angle MPY = \angle PYO = \angle PXO = \angle PXC$, and so by the alternate segment theorem, MP is tangent to K at P.

Solution 3 (Ivan Guo)

Let Q be the reflection of P about AC, so $PQ \parallel BD$. Then since $APCQ$ is a cyclic kite, the points A, P, C, Q are harmonic. Projecting them from P onto BD yields X, M', Y, ∞ where M' is the intersection of the tangent at P with BD. Since X, M', Y, ∞ are harmonic, then M' must be the midpoint of XY.

Solution 4 (Ivan Guo)

Since $ABCD$ is a square, A, B, C, D are harmonic. Projecting from P onto BD yields the harmonic points B, X, D, Y. Via a standard length calculation on the line BD, we immediately get $MX^2 = MD \times MB$. Since $AP \perp PY$, $MX = MP$ and the required tangency follows by power of a point.

Solution 5 (Ivan Guo)

Since $ABCD$ is a square, AP and CP are internal and external angle bisectors of $\angle BPD$. By the angle bisector theorem, we see that the circles DPB and XPY are circles of Apollonius. It is well-known that circles of Apollonius are orthogonal, hence the required tangency.

Solution 6 (Ivan Guo)

Let AY meet the circle at R. Apply the central projection that sends the line through Y perpendicular to BD to infinity while maintaining the circle. Then $A'R'P'C'$ is rectangle, hence X' is the new centre of the circle. Furthermore $\infty'C'$ is a tangent to the circle. But since harmonic points are preserved under central projections, X' is the midpoint of $M'\infty'$. By symmetry and $B'D'||P'C'$, we must have $M'P'$ being a tangent to the circle.

Solution 7 (Kevin McAvaney)

Let O be the centre of the circle. We show that OP and MP are perpendicular.

Angle $CPA = \angle CDA = 90$ degrees. So XYP is a right-angled triangle and M is therefore the centre of its circumcircle. Hence $MP = MY$. Since $ABCD$ is a square, O is the intersection of its diagonals and they are perpendicular.

So we have angle $MPY = \angle MYP = \angle OAP = \angle OPA$. Hence angle $OPM = \angle OPA + \angle APM = \angle MPY + \angle APM = 90$ degrees, as required.

Solution 8 (Alan Offer)

This problem can be handled fine with coordinates. Choose coordinates so that $A = (-1,0)$, $B = (0,-1)$, $C = (1,0)$, and $D = (0,1)$. Then $P = (u,v)$ with $u^2 + v^2 = 1$. Also,
X = (0, s) and Y = (0, t) for some numbers s and t. As the slope of AX is equal to the slope of AP, we obtain s = v/(1 + u). As the slope of CY is equal to the slope of CP, we have t = v/(1−u). The midpoint of XY is then at M = (0, 1/2(s+t)) = (0, v/(1−u^2)) = (0, 1/v).

Calling the origin O, the product of the slopes of MP and OP is

\[
\frac{v - 1/v}{u} \times \frac{v}{u} = \frac{v^2 - 1}{u^2} = -\frac{u^2}{u^2} = 1.
\]

Hence MP is perpendicular to the radius OP and so is tangent to the circle.

Solution 9 (Chaitanya Rao)

As in the official solution we have ∠MPA = ∠DXP. If O is the centre of K, then by the angle between intersecting chords theorem, ∠DXP = 1/2(∠AOB + ∠DOP) = 45° + 1/2∠DOP = ∠ABD + ∠DBP = ∠ABP. Hence ∠MPA = ∠ABP and by the converse of the alternate segment theorem MP is tangent to K.
7. Akshay writes a sequence $a_1, a_2, \ldots, a_{100}$ of integers in which the first and last terms are equal to 0. Except for the first and last terms, each term a_i is larger than the average of its neighbours a_{i-1} and a_{i+1}.

What is the smallest possible value for the term a_{19}?

Solution

Let $d_i = a_{i+1} - a_i$ for $i = 1, 2, 3, \ldots, 99$, so that $a_j = d_1 + d_2 + \cdots + d_{j-1}$ for $j = 2, 3, \ldots, 100$. The conditions of the problem are equivalent to the fact that $d_1 > d_2 > \cdots > d_{99}$ are integers and

$$d_1 + d_2 + \cdots + d_{99} = (a_2 - a_1) + (a_3 - a_2) + \cdots + (a_{100} - a_{99}) = a_{100} - a_1 = 0.$$

Observe that we can take $d_i = 50 - i$ for $i = 1, 2, 3, \ldots, 99$, which yields

$$a_{19} = (a_{19} - a_{18}) + (a_{18} - a_{17}) + \cdots + (a_2 - a_1)$$

$$= d_{18} + d_{17} + \cdots + d_1$$

$$= (50 - 18) + (50 - 17) + \cdots + (50 - 1)$$

$$= 18 \times 50 - \frac{18 \times 19}{2}$$

$$= 729.$$

We will now show that this is the smallest possible value for a_{19}. For the sake of contradiction, suppose that $a_{19} < 729$. Then

$$729 > a_{19} = d_{18} + d_{17} + \cdots + d_1$$

$$\geq (d_{18}) + (d_{18} + 1) + \cdots + (d_{18} + 17) = 18d_{18} + \frac{17 \times 18}{2}.$$

This leads to $d_{18} < 32$.

However, we also have

$$-729 < -a_{19} = -(d_1 + d_2 + \cdots + d_{18}) = d_{19} + d_{20} + \cdots + d_{99}$$

$$\leq (d_{18} - 1) + (d_{18} - 2) + \cdots + (d_{18} - 81) = 81d_{18} - \frac{81 \times 82}{2}.$$

This leads to $d_{18} > 32$, which contradicts the inequality obtained earlier. Therefore, we can conclude that the smallest possible value for the term a_{19} is 729.
8. Let \(n = 16^3r - 4^{3r} + 1 \) for some positive integer \(r \).

Prove that \(2^{n-1} - 1 \) is divisible by \(n \).

Solution 1 (Angelo Di Pasquale)

Observe that \(n \) has the form \(y^2 - y + 1 \), where \(y = 4^{3r} \). Thus, \(4^{3r+1} + 1 = y^3 + 1 = n(y+1) \). Therefore,

\[
4^{3r+1} + 1 \equiv 0 \pmod{n} \\
\Rightarrow 2^{2\cdot 3r+1} \equiv -1 \pmod{n} \\
\Rightarrow 2^{4\cdot 3r+1} \equiv 1 \pmod{n}.
\]

(1)

To show that \(2^{n-1} - 1 \equiv 1 \pmod{n} \), it suffices to show that \(4 \cdot 3r+1 | n-1 \), since if \(n-1 = 4 \cdot 3r+1m \), then raising both sides of (1) to the power of \(m \) yields the result.

Since \(n - 1 = 4^{3r}(4^r - 1) \), it suffices to show that \(3^{r+1} | 4^{3r} - 1 \). This can be done either by induction or by repeatedly factoring using the difference of perfect cubes.

Variant 1. (By induction)

For \(r = 1 \), it is easily verified that \(3^2 | 4^3 - 1 \).

Assume that \(3^{r+1} | 4^{3r} - 1 \). Then

\[
4^{3r+1} - 1 = (4^{3r})^3 - 1 = (4^{3r} - 1)(16^{3r} + 4^{3r} + 1).
\]

The inductive assumption tells us that \(3^{r+1} \) divides the first bracket. The second bracket is congruent to \(1^{3r} + 1^{3r} + 1 \equiv 0 \) modulo 3. Thus, \(3^{r+2} \) divides \(4^{3r+1} - 1 \) and this completes the induction.

Variant 2. (By repeatedly factoring using the difference of perfect cubes)

\[
4^{3r} - 1 = (4^{3r-1} - 1)(16^{3r-1} + 4^{3r-1} + 1) \\
= (4^{3r-2} - 1)(16^{3r-2} + 4^{3r-2} + 1)(16^{3r-1} + 4^{3r-1} + 1) \\
\vdots \\
= (4 - 1) \prod_{i=0}^{r-1} (16^i + 4^i + 1)
\]

Each bracket in the above factorisation is divisible by 3. Since there are \(r + 1 \) brackets, it follows that \(3^{r+1} \) divides \(4^{3r} - 1 \).

Solution 2 (Ivan Guo)

In the last part of the official solution, in order to prove \(3^{r+1} | 4^{3r} - 1 \), it suffices to note that \(\phi(3^{r+1}) = 2 \times 3^r \), thus \(4^{3r} = 2^{\phi(3^{r+1})} \equiv 1 \pmod{3^{r+1}} \) by Euler’s theorem.