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DAY 1

Tuesday, 5 February 2019

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. Find all real numbers r for which there exists exactly one real number a such that when

(x+ a)(x2 + rx+ 1)

is expanded to yield a cubic polynomial, all of its coefficients are greater than or equal

to zero.

2. For each positive integer n, the nth triangular number is the sum of the first n positive

integers. Let a, b, c be three consecutive triangular numbers with a < b < c.

Prove that if a+ b+ c is a triangular number, then b is three times a triangular number.

3. Let A,B,C,D,E be five points in order on a circle K. Suppose that AB = CD and

BC = DE. Let the chords AD and BE intersect at the point P .

Prove that the circumcentre of triangle AEP lies on K.

4. Let Q be a point inside the convex polygon P1P2 · · ·P1000. For each i = 1, 2, . . . , 1000,

extend the line PiQ until it meets the polygon again at a point Xi. Suppose that none

of the points X1, X2, . . . , X1000 is a vertex of the polygon.

Prove that there is at least one side of the polygon that does not contain any of the

points X1, X2, . . . , X1000.
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DAY 2

Wednesday, 6 February 2019

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. A fancy triangle is an equilateral triangular array of integers such that the sum of the

three numbers in any unit equilateral triangle is a multiple of 3. For example,

1

0 2

5 7 3

is a fancy triangle with three rows because the sum of the numbers in each of the

following four unit equilateral triangles is a multiple of 3.

1

0 2

0

5 7

0 2

7

2

7 3

Suppose that a fancy triangle has ten rows and that exactly n of the numbers in the

triangle are multiples of 3.

Determine all possible values for n.

6. Let K be the circle passing through all four corners of a square ABCD. Let P be a

point on the minor arc CD, different from C and D. The line AP meets the line BD

at X and the line CP meets the line BD at Y . Let M be the midpoint of XY .

Prove that MP is tangent to K.

7. Akshay writes a sequence a1, a2, . . . , a100 of integers in which the first and last terms are

equal to 0. Except for the first and last terms, each term ai is larger than the average of

its neighbours ai−1 and ai+1.

What is the smallest possible value for the term a19?

8. Let n = 163
r − 43

r
+ 1 for some positive integer r.

Prove that 2n−1 − 1 is divisible by n.
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1. Find all real numbers r for which there exists exactly one real number a such that when

(x+ a)(x2 + rx+ 1)

is expanded to yield a cubic polynomial, all of its coefficients are greater than or equal to

zero.

Solution 1 (Angelo Di Pasquale)

Answer: r = −1.

Expanding the brackets, we see that we want the following three inequalities to be true.

a ≥ 0 (constant term) (1)

ar + 1 ≥ 0 (coefficient of x) (2)

a+ r ≥ 0 (coefficient of x2) (3)

If r ≥ 0, then any a ≥ 0 satisfies (1), (2), and (3).

It remains to address r < 0. In this case note that (3) immediately implies (1). So we

only need to consider (2) and (3). Since r < 0, inequalities (2) and (3) are equivalent to

the following.

a ≤ −1

r
(4)

a ≥ −r (5)

Hence, we seek all values of r < 0 such that there is exactly one real number a satisfying

−r ≤ a ≤ −1

r
. (6)

Thus −r = −1
r , which implies r = ±1. Since r < 0 we have r = −1. This implies that the

only corresponding value of a is a = 1.

It only remains to observe that

(x+ 1)(x2 − x+ 1) = x3 + 1,

which has no negative coefficients.

Solution 2 (Alan Offer)

Expanded, the cubic is

x3 + (a+ r)x2 + (ar + 1)x+ a.

Plotted on a Cartesian plane with a on the horizontal axis and r on the vertical axis, the

condition that a+ r ≥ 0 is satisfied by the points in the region above and right of the line

a+ r = 0. Similarly, the condition that ar + 1 ≥ 0 corresponds to the region between the

two branches of the hyperbola r = −1/a.
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The intersection of these two regions is then where both of the coefficients a+r and ar+1

are non-negative, so we are being asked for the horizontal coordinates r at which a vertical

line meets this region in exactly one point, and this occurs at r = −1, where the line and

the hyperbola meet at (−1, 1). (Notice that the coefficient a is then also non-negative.)
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2. For each positive integer n, the nth triangular number is the sum of the first n positive

integers. Let a, b, c be three consecutive triangular numbers with a < b < c.

Prove that if a+ b+ c is a triangular number, then b is three times a triangular number.

Solution 1 (Mike Clapper)

Let Tm = Tn−1 + Tn + Tn+1.

Then
m

2
(m+1) =

n

2
(n− 1)+

n

2
(n+1)+

n+ 1

2
(n+2) which simplifies to 3(n2 +n)+ 2 =

m2 +m.

Considering this equation modulo 3, we see that the LHS ≡ 2 (mod 3).

This is only possible if m ≡ 1 (mod 3) so we can let m = 3s+ 1 for some integer s.

Hence, 3(n2 + n) + 2 = (3s+ 1)(3s+ 2) giving n2 + n = 3(s2 + s) and Tn = 3Ts.

Solution 2 (Ivan Guo)

Instead of triangular numbers, it suffices to double everything and work only with numbers

of the form n(n+ 1) where n ≥ 1. The required condition can be rewritten as

n(n− 1) + n(n+ 1) + (n+ 1)(n+ 2) = (m+ 1)(m+ 2) ⇐⇒ 3n2 + 3n = m2 + 3m.

So 3 | m. Writing m = 3s yields n2 + n = 3(s2 + s), as required. (Note that we need to

check s ≥ 1 but this is clear since both sides are positive here.)
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3. Let A,B,C,D,E be five points in order on a circle K. Suppose that AB = CD and

BC = DE. Let the chords AD and BE intersect at the point P .

Prove that the circumcentre of triangle AEP lies on K.

Solution 1 (Angelo Di Pasquale)

Since AB = CD and ABCD is cyclic, it follows that ABCD is an isosceles trapezium

with AD ‖ BC. Similarly, BE ‖ CD.

B

PC

D

A

E

O

Q

Let O be the midpoint of arc AE of circle ABCDE. Thus OA = OE. Let Q be second

intersection point of line AO with circle AEP . Let x = ∠BPA. We calculate the following

angles.

∠CDA = x (BE ‖ CD)

∠DAB = x (isosceles trapezium ABCD)

∠EQA = x (AQEP cyclic)

∠ABP = 180◦ − 2x (angle sum �ABP )

∠QOE = 180◦ − 2x (ABEO cyclic)

∠OEQ = x (angle sum �OQE)

Hence, �OQE is isosceles with OQ = OE. Since OQ = OE = OA, it follows circle AEQ

has centre O. Since P also lies on this circle, we may conclude that O is the circumcentre

of �AEP .

Solution 2 (Alice Devillers)

We need to prove that the centre O of the circumcircle to AEP satisfies ∠AOE = 180−
∠ADE.

We will repeatedly use the angles intercepting arcs of the same length are the same: for

instance ∠ABC = ∠BCD = ∠CDE.
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Since the sum of the angles in a pentagon is 540◦, so

540◦ = ∠ABC + ∠BCD + ∠CDE + ∠DEA+ ∠EAB

= 3∠CDE + ∠DEB + ∠BEA+ ∠EAD + ∠DAB

= 3∠CDE + 180◦ − ∠DCB + ∠BEA+ ∠EAD + 180◦ − ∠DCB

= 360◦ + ∠CDE + 180◦ − ∠APE.

Thus, ∠CDE = ∠APE.

Because of the circumcircle, ∠AOE = 360◦ − 2∠APE = 360◦ − 2∠CDE. On the other

hand,

∠ADE = ∠CDE − ∠ADC = ∠CDE − (180◦ − ∠ABC) = 2∠CDE − 180◦.

Hence, ∠AOE + ∠ADE = 180◦ and we are done.

Solution 3 (Angelo Di Pasquale)

With notation in solution 1, we have ∠APE = 180◦ − x and ∠EOA = 2x. Thus

∠AEO (reflex) = 360◦ − 2x = 2∠APE. Consider any point X that satisfies the following.

� X and P lie on opposite sides of line AE.

� X lies on the perpendicular bisector of AE.

� ∠AXE( reflex) = 2∠APE.

There is only one point X that has these properties. This is because as X moves on

the perpendicular bisector of AE away from (closer to) AE, the reflex angle AXE gets

larger (smaller). The circumcentre of �AEP and point O both have the above properties.

Hence, O is the circumcentre of �AEP .

Solution 4 (Angelo Di Pasquale)

(Variation on the alternative solution) Let x = ∠BPA. Then ∠CDA = x since CD ‖ BE

from isosceles trapezium BCDE. Also ∠DAB = x from isosceles trapezium ABCD. From

the angle sum in �ABP , we deduce ∠ABE = 180◦ − 2x.

We also have ∠APE = 180◦ − x. Let O be the circumcentre of �AEP . Thus reflex angle

∠AOE = 2∠APE = 360◦ − 2x, and so ∠EOA = 2x. Since ∠ABE + ∠EOA = 180◦, it

follows that ABEO is cyclic. Thus O lies on circle(ABE) = circle(ABCDE).

Solution 5 (Ivan Guo)

The given length conditions imply that ABCD and BCDE are isosceles trapezia, while

BCDP is a parallelogram. Hence, let ∠ABC = ∠BCD = ∠CDE = ∠EPA = θ. Con-

struct O to be the midpoint of the arc AE. Since in a cyclic hexagon, the three non-

adjacent angles add up to 360◦, we have 360◦ − ∠EOA = 2θ = 2∠EPA. Therefore, O is

the circumcentre of EPA.

Solution 6 (Daniel Mathews)
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Let the given circle be Γ, with centre O, and let a = ∠DAEandb = ∠BEA. Then a

and b are the angles subtended by the arcs DE and AB respectively; note a, b < 90◦. As

AB = CD then ∠CED = b, and as BC = DE then ∠BEC = a.

Now AE subtends ∠APE = 180− ∠AEP − ∠EAP = 180− a− b at P , which is obtuse.

Hence, AE subtends a + b at points of Γ on the other side of AE from P , and subtends

2a+ 2b at O. Thus O lies on the other side of AE from P, and satisfies ∠AOE = 2a+ 2b.

On the other hand, AE subtends an angle of 180◦ − 2a− 2b at D, since

∠ADE = 180−∠DAE−∠AED = 180−∠DAE−∠AEP−∠BEC−∠CED = 180−2a−2b,

and hence, subtends 2a + 2b at points of Γ on the other side of AE from P . Thus O lies

on Γ.

Solution 7 (Kevin McAvaney)

From isosceles trapezia ABCD and BCDE, triangles ABP and EDP are isosceles and

equiangular. Let DO be the perpendicular bisector of EP with O on the circumcircle of

ABCDE. Then DO bisects angle PDE. Angles ODE and OBE are equal. Hence, BO

bisects angle ABP . Therefore, BO is the perpendicular bisector of AP . Hence, O the

circumcentre of triangle AEP .

Solution 8 (Alan Offer)

Let O be the centre of the circumcircle of triangle AEP . In terms of directed angles, it

follows that ∠AOE = 2∠APE. Now O is on the circumcircle of ABCDE if ∠AOE =

∠ABE, so it suffices to show that ∠ABE = 2∠APE. With this in mind, we have

2∠APE = 2∠ABE + 2∠DAB (exterior angle of �ABP )

= ∠ABE + ∠ACE + 2∠DAB (ABCE cyclic)

= ∠ABE + ∠ACE + (∠DAC + ∠CAB) + ∠DAB

= ∠ABE + ∠DAB + (∠ACE + ∠BCA+ ∠ECD) (arcs DC = BA and CB = ED)

= ∠ABE + (∠DAB + ∠BCD)

= ∠ABE (ABCD cyclic).
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4. Let Q be a point inside the convex polygon P1P2 · · ·P1000. For each i = 1, 2, . . . , 1000,

extend the line PiQ until it meets the polygon again at a point Xi. Suppose that none of

the points X1, X2, . . . , X1000 is a vertex of the polygon.

Prove that there is at least one side of the polygon that does not contain any of the points

X1, X2, . . . , X1000.

Solution 1

Since Q does not lie on a diagonal of the polygon, each of the points X1, X2, . . . , X1000 lies

on the interior of a side of the polygon. Suppose that X1 lies on the side PiPi+1. Without

loss of generality, we may assume that i ≤ 500; otherwise, we could relabel the vertices in

the opposite orientation instead.

Then the points P2, P3, . . . , Pi lie on one side of the line P1Q, which means that the points

X2, X3, . . . , Xi must lie on the other side of the line P1Q. So the i pointsX1, X2, X3, . . . , Xi

must lie on the 1001− i sides PiPi+1, Pi+1Pi+2, . . . , P1000P1. Furthermore, no other point

Xj can lie on one of these sides, since they lie on the other side of the line P1Q. However,

since i ≤ 500, we have i < 1001− i. It follows that there must be at least one of the sides

PiPi+1, Pi+1Pi+2, . . . , P1000P1 that does not contain any of the points X1, X2, . . . , X1000.

Solution 2 (Angelo Di Pasquale)

Define a butterfly to be the region formed by the two triangles cut out by a pair of con-

secutive main diagonals of the polygon. If Q lies inside a butterfly, then it is easy to see

that the conclusion of the problem is true since a line that enters a triangle must exit it

somewhere.

Q

To finish, it suffices to prove that the point Q lies inside a butterfly. For any directed line

AB, we define its positive side to be the half-plane of points X such that 0 < ∠BAX <

180◦. We also define its negative side to be the half-plane of points X such that 180◦ <

∠BAX < 360◦. In both cases, the angle is directed anticlockwise modulo 360◦.

Without loss of generality, suppose that Q lies on the positive side of the directed line

P0P500, where we consider all subscripts modulo 1000. Then Q lies on the negative side

of the directed line P500P0. Hence, there exists an integer i with 0 ≤ i ≤ 499 such that Q

lies on the positive side of PiPi+500 but on the negative side of Pi+1Pi+501. Thus, Q lies

inside the butterfly defined by PiPi+500 and Pi+1Pi+501.

Solution 3 (Kevin McAvaney)

We will prove the statement more generally for a convex 2m-gon. Suppose that each side

of the polygon contains at least one of the points X1, X2, . . . , X2m on its interior. Then
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each side contains exactly one of the points X1, X2, . . . , X2m on its interior. Otherwise,

one of the lines through Q passes through an interior point of at least two polygon sides

and this contradicts the convexity of the polygon.

Label the lines through Q in clockwise order L1, L2, L3, . . . , L2m. Label the vertices of the

polygon in clockwise order P1, P2, P3, . . . , P2m. Without loss of generality, suppose that

L1 passes through P1. Then L2 passes through an interior point of the side P1P2 and L3

passes through P2. Hence, L4 passes through an interior point of side P2P3 and L5 passes

through P3. Continuing in the same manner, we see that only the lines indexed by odd

integers pass through vertices of the polygon and this produces the desired contradiction.

Solution 4 (Chaitanya Rao)

For notational convenience let P1000+i = Pi for i ∈ {1, 2, . . . , 1000}. The diagonal PiPi+500

joining opposite vertices divides the convex polygon into the following two 501-gons:

P1P2 · · ·PiPi+500Pi+501 · · ·P1000 and PiPi+1Pi+2 · · ·Pi+500. Since Q is not on a diagonal

and the original polygon is convex, Q lies inside one of these polygons and outside the

other.

Define a function f : {1, 2, . . . , 1000} → {0, 1} by

f(i) =

{
1, if Q lies inside P1P2 · · ·PiPi+500Pi+501 · · ·P1000,

0, otherwise.

Note that f(i) = 1 − f(i + 500), since Q is inside exactly one of the two 501-gons

P1P2 · · ·PiPi+500Pi+501 · · ·P1000 and PiPi+1 · · ·Pi+500. Hence, the function f is not con-

stant and there exists some j for which f(j) = 0 and f(j+1) = 1, as shown in the following

diagram.

Q

Pj+500

Pj+501

PjPj+1

We then find that segment PjPj+1 contains bothXj+500 andXj+501 since they are the bases

of internal cevians of triangles Pj+500PjPj+1 and Pj+501PjPj+1, respectively. Note that

both triangles have Q in the interior of their intersection. Since Q is not on a diagonal,

none of the points Xi is a vertex of the the polygon and we conclude that there exists

another side of the polygon that does not contain any of the points X1, X2, . . . , X1000.

Solution 5 (Ian Wanless)

Consider the diagonal d = P1Pm+1. By assumption, Q does not lie on d. Assume that Q

lies on the same side of d as P2m does, since the other case is equivalent after relabelling

the vertices. Let 1 ≤ i ≤ m + 1 and note that the ray from Pi to Q hits d before it hits

Q. This means that the point Xi is on the same side of d as Q. But this means that the
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m + 1 points X1, X2, . . . , Xm+1 lie on the m sides Pm+1Pm+2, . . . , P2m−1P2m, P2mP1. By

the pigeonhole principle, at least two of points X1, X2, . . . , Xm+1 lie on the same side of

the polygon. By a second application of the pigeonhole principle, it follows that there is

some side of the polygon that contains none of the points X1, X2, . . . , X2m.
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5. A fancy triangle is an equilateral triangular array of integers such that the sum of the

three numbers in any unit equilateral triangle is a multiple of 3. For example,

1

0 2

5 7 3

is a fancy triangle with three rows because the sum of the numbers in each of the following

four unit equilateral triangles is a multiple of 3.

1

0 2

0

5 7

0 2

7

2

7 3

Suppose that a fancy triangle has ten rows and that exactly n of the numbers in the

triangle are multiples of 3.

Determine all possible values for n.

Solution (Angelo Di Pasquale)

Answers: n = 0, 18, 19, or 55

Consider the four numbers in any two unit equilateral triangles that share a common edge

as shown in the diagram.

u

v w

x

Since u + v + w ≡ 0 ≡ v + w + x (mod 3), it follows that u ≡ x (mod 3). Using this

observation we deduce that if we reduce the entries of the triangle modulo 3, it takes the

following form.

u

v w

u

v w

u

v w

u

v w

u

v w

vw

uu

vw

uu

vw

uu

vw

uu

wv

vw

wv

vw

wv

vw

uu

wv

uu

wv

vw

uu

Note that the triangular array is fancy if and only if 3 | u + v + w. Reducing modulo 3,

we have the cases (u, v, w) = (0, 0, 0), (1, 1, 1), (2, 2, 2), or any permutation of (0, 1, 2).

� If (u, v, w) = (0, 0, 0), then n = 55.

� If (u, v, w) = (1, 1, 1) or (2, 2, 2), then n = 0.

� If (u, v, w) = (0, 1, 2) or (0, 2, 1), then n = 19.

� If (u, v, w) = (1, 0, 2) or (1, 2, 0) or (2, 1, 0) or (2, 0, 1), then n = 18.
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6. Let K be the circle passing through all four corners of a square ABCD. Let P be a point

on the minor arc CD, different from C and D. The line AP meets the line BD at X and

the line CP meets the line BD at Y . Let M be the midpoint of XY .

Prove that MP is tangent to K.

Solution 1

By the converse of the alternate segment theorem, it suffices to prove that ∠MPA =

∠ABP .

A

B C

D

X

Y

M

P

Let ∠AXB = ∠MXP = θ. Since AC is a diameter of the circle, ∠APC = ∠APY = 90◦.

So M is the midpoint of the hypotenuse of the right-angled triangle XY P . It follows that

MX = MP , so ∠MPA = ∠MPX = ∠MXP = θ.

Now observe that ∠AXD = 180◦ − θ and ∠XDA = 45◦, so ∠DAP = ∠DAX = θ − 45◦.

By cyclic quadrilateral ABPD, we have ∠DBP = ∠DAP = θ−45◦. Therefore, ∠ABP =

∠ABD + ∠DBP = 45◦ + (θ − 45◦) = θ.

So we have shown that ∠MPA = ∠ABP = θ, as required.

Solution 2 (Alice Devillers)

Pick coordinates such that A = (0,−1), B = (−1, 0), C = (0, 1), D = (0, 1), so P =

(cos θ, sin θ) where θ is between 0 and π/2. We easily compute the equations of AP:

y+1 = sin θ+1
cos θ x and CP: y−1 = sin θ−1

cos θ x, while BD is just y = 0. Thus X = ( cos θ
sin θ+1 , 0) and

Y = (− cos θ
sin θ−1 , 0). The middle point M is X = ( 1

cos θ , 0) (here we used sin2 θ− 1 = − cos2 θ

and cos θ �= 0). If we take the dot product of the vectors OP and MP, we get 0 so MP is

tangent to the circle of radius 1 centred at O.

Solution 2 (Angelo Di Pasquale)

Let O = AC ∩BD. Note that AC ⊥ BD, and so ∠AOY = 90◦. Also ∠AP ⊥ PC because

AC is a diameter of K. Thus ∠APY = 90◦ = ∠AOY , and so AOPY is cyclic.
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As ∠XPY = 90◦ and M is the midpoint of XY , we have M is the centre of circle PXY .

Thus MX = MP = MY .

From MY = MP and cyclic AOPY , we find ∠MPY = ∠PY O = ∠PXO = ∠PXC, and

so by the alternate segment theorem, MP is tangent to K at P .

Solution 3 (Ivan Guo)

Let Q be the reflection of P about AC, so PQ‖BD. Then since APCQ is a cyclic kite,

the points A,P,C,Q are harmonic. Projecting them from P onto BD yields X,M ′, Y,∞
where M ′ is the intersection of the tangent at P with BD. Since X,M ′, Y,∞ are harmonic,

then M ′ must be the midpoint of XY .

Solution 4 (Ivan Guo)

Since ABCD is a square, A,B,C,D are harmonic. Projecting from P onto BD yields

the harmonic points B,X,D, Y . Via a standard length calculation on the line BD, we

immediately get MX2 = MD × MB. Since AP⊥PY , MX = MP and the required

tangency follows by power of a point.

Solution 5 (Ivan Guo)

Since ABCD is a square, AP and CP are internal and external angle bisectors of ∠BPD.

By the angle bisector theorem, we see that the circles DPB and XPY are circles of

Apollonius. It is well-known that circles of Apollonius are orthogonal, hence the required

tangency.

Solution 6 (Ivan Guo)

Let AY meet the circle at R. Apply the central projection that sends the line through Y

perpendicular to BD to infinity while maintaining the circle. Then A′R′P ′C ′ is rectangle,

hence X ′ is the new centre of the circle. Furthermore ∞′C ′ is a tangent to the circle.

But since harmonic points are preserved under central projections, X ′ is the midpoint of

M ′∞′. By symmetry and B′D′‖P ′C ′, we must have M ′P ′ being a tangent to the circle.

Solution 7 (Kevin McAvaney)

Let O be the centre of the circle. We show that OP and MP are perpendicular.

Angle CPA = angle CDA = 90 degrees. So XPY is a right-angled triangle and M is

therefore the centre of its circumcircle. Hence MP = MY. Since ABCD is a square, O is

the intersection of its diagonals and they are perpendicular.

So we have angle MPY = angle MYP = angle OAP = angle OPA. Hence angle OPM =

angle OPA + angle APM = angle MPY + angle APM = 90 degrees, as required.

Solution 8 (Alan Offer)

This problem can be handled fine with coordinates. Choose coordinates so that A =

(−1, 0), B = (0,−1), C = (1, 0), and D = (0, 1). Then P = (u, v) with u2 + v2 = 1. Also,
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X = (0, s) and Y = (0, t) for some numbers s and t. As the slope of AX is equal to the slope

of AP , we obtain s = v/(1 + u). As the slope of CY is equal to the slope of CP , we have

t = v/(1−u). The midpoint of XY is then at M = (0, 12(s+t)) = (0, v/(1−u2)) = (0, 1/v).

Calling the origin O, the product of the slopes of MP and OP is

v − 1/v

u
× v

u
=

v2 − 1

u2
=

−u2

u2
= 1.

Hence MP is perpendicular to the radius OP and so is tangent to the circle.

Solution 9 (Chaitanya Rao)

As in the official solution we have ∠MPA = ∠DXP . If O is the centre of K, then by

the angle between intersecting chords theorem, ∠DXP = 1
2(∠AOB + ∠DOP ) = 45◦ +

1
2∠DOP = ∠ABD + ∠DBP = ∠ABP . Hence ∠MPA = ∠ABP and by the converse of

the alternate segment theorem MP is tangent to K.
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7. Akshay writes a sequence a1, a2, . . . , a100 of integers in which the first and last terms are

equal to 0. Except for the first and last terms, each term ai is larger than the average of

its neighbours ai−1 and ai+1.

What is the smallest possible value for the term a19?

Solution

Let di = ai+1−ai for i = 1, 2, 3, . . . , 99, so that aj = d1+d2+· · ·+dj−1 for j = 2, 3, . . . , 100.

The conditions of the problem are equivalent to the fact that d1 > d2 > · · · > d99 are

integers and

d1 + d2 + · · ·+ d99 = (a2 − a1) + (a3 − a2) + · · ·+ (a100 − a99) = a100 − a1 = 0.

Observe that we can take di = 50− i for i = 1, 2, 3, . . . , 99, which yields

a19 = (a19 − a18) + (a18 − a17) + · · ·+ (a2 − a1)

= d18 + d17 + · · ·+ d1

= (50− 18) + (50− 17) + · · ·+ (50− 1)

= 18× 50− 18× 19

2

= 729.

We will now show that this is the smallest possible value for a19. For the sake of contra-

diction, suppose that a19 < 729. Then

729 > a19 = d18 + d17 + · · ·+ d1

≥ (d18) + (d18 + 1) + · · ·+ (d18 + 17) = 18d18 +
17× 18

2
.

This leads to d18 < 32.

However, we also have

−729 <− a19 = −(d1 + d2 + · · ·+ d18) = d19 + d20 + · · ·+ d99

≤ (d18 − 1) + (d18 − 2) + · · ·+ (d18 − 81) = 81d18 −
81× 82

2
.

This leads to d18 > 32, which contradicts the inequality obtained earlier. Therefore, we

can conclude that the smallest possible value for the term a19 is 729.
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8. Let n = 163
r − 43

r
+ 1 for some positive integer r.

Prove that 2n−1 − 1 is divisible by n.

Solution 1 (Angelo Di Pasquale)

Observe that n has the form y2−y+1, where y = 43
r
. Thus, 43

r+1
+1 = y3+1 = n(y+1).

Therefore,

43
r+1

+ 1 ≡ 0 (mod n)

⇒ 22·3
r+1 ≡ −1 (mod n)

⇒ 24·3
r+1 ≡ 1 (mod n). (1)

To show that 2n−1 ≡ 1 (mod n), it suffices to show that 4 · 3r+1 | n − 1, since if n − 1 =

4 · 3r+1m, then raising both sides of (1) to the power of m yields the result.

Since n− 1 = 43
r
(43

r − 1), it suffices to show that 3r+1 | 43r − 1. This can be done either

by induction or by repeatedly factoring using the difference of perfect cubes.

Variant 1. (By induction)

For r = 1, it is easily verified that 32 | 43 − 1.

Assume that 3r+1 | 43r − 1. Then

43
r+1 − 1 = (43

r
)3 − 1 = (43

r − 1)(163
r
+ 43

r
+ 1).

The inductive assumption tells us that 3r+1 divides the first bracket. The second bracket

is congruent to 13
r
+13

r
+1 ≡ 0 modulo 3. Thus, 3r+2 divides 43

r+1 −1 and this completes

the induction.

Variant 2. (By repeatedly factoring using the difference of perfect cubes)

43
r − 1 = (43

r−1 − 1)(163
r−1

+ 43
r−1

+ 1)

= (43
r−2 − 1)(163

r−2
+ 43

r−2
+ 1)(163

r−1
+ 43

r−1
+ 1)

...

= (4− 1)
r−1∏
i=0

(163
i
+ 43

i
+ 1)

Each bracket in the above factorisation is divisible by 3. Since there are r+ 1 brackets, it

follows that 3r+1 divides 43
r − 1.

Solution 2 (Ivan Guo)

In the last part of the official solution, in order to prove 3r+1|43r − 1, it suffices to note

that φ(3r+1) = 2× 3r, thus 43
r
= 2φ(3

r+1) ≡ 1 mod 3r+1 by Euler’s theorem.
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